Long-Lived Species Enhance Summertime Attribution of North American Ozone to Upwind Sources.
نویسندگان
چکیده
Ground-level ozone (O3), harmful to most living things, is produced from both domestic and foreign emissions of anthropogenic precursors. Previous estimates of the linkage from distant sources rely on the sensitivity approach (i.e., modeling the change of ozone concentrations that result from modifying precursor emissions) as well as the tagging approach (i.e., tracking ozone produced from specific O3 precursors emitted from one region). Here, for the first time, we tag all O3 precursors (i.e., nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs)) from East Asia and explicitly track their physicochemical evolution without perturbing the nonlinear O3 chemistry. We show that, even in summer, when intercontinental influence on ozone has typically been found to be weakest, nearly 3 parts per billion by volume (ppbv) seasonal average surface O3 over North America can be attributed to East Asian anthropogenic emissions, compared with 0.7 ppbv using the sensitivity approach and 0.5 ppbv by tagging reactive nitrogen oxides. Considering the acute effects of O3 exposure, approximately 670 cardiovascular and 300 respiratory premature mortalities within North America could be attributed to East Asia. CO and longer-lived VOCs, largely overlooked in previous studies, extend the influence of regional ozone precursors emissions and, thus, greatly enhance O3 attribution to source region.
منابع مشابه
Trans-Eurasian transport of ozone and its precursors
[1] Long-range transport of air across the European and Asian continents brings substantial quantities of ozone and other oxidants to northeast Asia from upwind sources over Europe and North America. This transport differs significantly from that over the Pacific and Atlantic Oceans because of weaker and less frequent frontal systems over the continent and because of weaker convective lifting o...
متن کاملThe Mediterranean summertime ozone maximum: global emission sensitivities and radiative impacts
The Mediterranean troposphere exhibits a marked and localised summertime ozone maximum, which has the potential to strongly impact regional air quality and radiative forcing. The Mediterranean region can be perturbed by long-range pollution import from Northern Europe, North America and Asia, in addition to local emissions, which may all contribute to regional ozone enhancements. We exploit ozo...
متن کاملMeasurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas
Sea-land and mount-valley circulations are the dominant mesoscale synoptic systems affecting the Beijing area during summertime. Under the influence of these two circulations, the prevailing wind is southwesterly from afternoon to midnight, and then changes to northeasterly till forenoon. In this study, surface ozone (O3), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), nitroge...
متن کاملEvaluating Summer-Time Ozone Enhancement Events in the Southeast United States
This study evaluates source attribution of ozone (O3) in the southeast United States (US) within O3 lamina observed by the University of Alabama in Huntsville (UAH) Tropospheric Ozone Lidar Network (TOLNet) system during June 2013. This research applies surface-level and airborne in situ data and chemical transport model simulations (GEOS-Chem) in order to quantify the impact of North American ...
متن کاملArctic air pollution: origins and impacts.
Notable warming trends have been observed in the Arctic. Although increased human-induced emissions of long-lived greenhouse gases are certainly the main driving factor, air pollutants, such as aerosols and ozone, are also important. Air pollutants are transported to the Arctic, primarily from Eurasia, leading to high concentrations in winter and spring (Arctic haze). Local ship emissions and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 51 9 شماره
صفحات -
تاریخ انتشار 2017